集めた(または書いた)資料一覧

集めたまたは書いた資料一覧

集めた(または書いた)資料一覧(20/08/06)

AI No.1バインダー

  1. Atomのインストール(各種パッケージのインストール)
  2. Emacs入門ガイド
  3. UBUNTUのインストール
  4. fdiskコマンドの書式
  5. Linuxのマウント(mount)について
  6. Linuxファイルシステムの種類や作成方法について
  7. Linuxパーティションとは?パーティションの区切り方を詳細解説
  8. Linuxのフォーマットの方法
  9. Ubuntu日本語フォーラム
  10. Ubuntu 18.04 LTS 日本語 Remix
  11. UbuntuのLive USBをつくる
  12. Installing on Linux(英文)
  13. Python開発環境設定
  14. Atomの実行
  15. OBJECT指向入門
  16. 外付けHDDにUbuntuをインストールするまで
  17. Recovery手順18-08-04
  18. 作業手順(外付けHDD)
  19. システムジェネレーションその4
  20. ライセンス認証済み
  21. WSLでmatplotlibやgnuplotがプロットできない
  22. AnacondaなしでAtomのHydrogenをいれる
  23. Windows Subsystem for Linux
  24. オブジェクト指向をより理解するために実際に書いて説明する
  25. オブジェクト指向と10年戦って分かったこと
  26. なぜオブジェクト指向は難しいのか
  27. 正しい名前を付けることが大切な理由
  28. Chromeを使うなら必ずServiceWorkerを無効にしよう
  29. オブジェクト指向のいろは
  30. 初心者向け独学でAIエンジニアになりたい人向けおすすめの勉強方法
  31. Python Flaskを使用したWebサーバーの作成
  32. What is GitHub?(英文)
  33. GitHubって何?(日本文)
  34. WSL(flask)とUSBのやり取り(Logなど)
  35. データベースコンソールの操作
  36. ローカル接続(データベース)
  37. 独自SSL証明書導入
  38. 今まで学習したこと(flask関連)
  39. Demoxx関連ジャーナル
  40. 機械学習/ディープラーニング初心者が2018年にやったこと、読んだ論文
  41. Deep Learning学習計画表(AI技術者になるために)(日本語)
  42. Octave入門
  43. 【Deep Learning入門】0から勉強して3ヶ月でポリープ検出AIを作った

AI No.2バインダー

  1. Coursera Machine Learning関連資料

AI No.3バインダー

  1. はじめにーディープラーニング入門:Chainerチュートリアル
  2. Chainerが作った「ディープラーニング入門」が凄すぎる!
  3. Pythonチュートリアル
  4. [2019年5月版]機械学習・深層学習トレンド・リンク150
  5. 【Python入門】クラスの継承についてやさしく解説
  6. オブジェクトデータメソッド
  7. Qiitaでよい記事を書く技術
  8. NumPyとは?
  9. Deep Learning実践開発講座(DL4US)公開用リポジトリ
  10. 経験零から始めるAI開発
  11. PyCharmでライブラリをインストールする
  12. PyCharmの使い方
  13. NumPyでndarray型の配列を新規作成する方法
  14. Python学習手順
  15. PythonのプログラムをWebサイトに転送して動かすまで
  16. ロリポップ!FTP(フォルダの作成、編集)
  17. ロリポップ!FTP(ファイルのアップロード)
  18. 入門の第一歩!PowerShellの概要を知ろう
  19. 【Python】フレームワークFlaskの基本をマスター
  20. 40年でソフトウェア開発の景色はどのぐらい変わったのか?
  21. Windows標準機能「ペイント」で複数の画像を1つにまとめる方法
  22. Windows10で「あ」「A」のウザい表示を消す方法
  23. IT業界のルー大柴と渡り合うためのカタカナ用語一覧
  24. RSSって何?RSSの仕組みを理解し、RSSリーダー「Feedly」を使ってみよう!
  25. chrome使用時に右下に表示される広告・通知を消す方法【Windows10】

AI No.4バインダー

  1. Windowsのポチポチ業務を爆速化できるPowerShell、はじめのハードルぐーーんと下げてみます!
  2. Windowsのポチポチ業務を爆速化できるPowerShell、キーボードを使わずささっと起動する方法
  3. Windowsのポチポチ業務を爆速化できるPowerShellの絶対条件!ディレクトリとその移動をマスターしよう!
  4. Windowsのポチポチ業務を爆速化するPowerShell、コマンドレットを腹の底から理解する!
  5. Windowsのポチポチ業務を爆速化するPowerShell、オンラインヘルプでコマンドレットを使い倒す!
  6. Windowsのポチポチ業務を爆速化するPowerShell、統合開発環境ISEを紹介します!
  7. Windowsのポチポチ業務を爆速化するPowerShell、スクリプトを実行するための準備
  8. Windowsのポチポチ業務を爆速化するPowerShell、フォルダを作るスクリプトの作り方
  9. Windowsのポチポチ業務を爆速化するPowerShell、if文を使いフォルダの有無で処理を分岐させる方法
  10. Windowsのポチポチ業務を爆速化するPowerShell、ForEach-Objectで配列の全要素を処理する方法
  11. Windowsのポチポチ業務を爆速化するPowerShell、パイプラインを使いコマンドレット間で値を引き渡す方法
  12. Windowsのポチポチ業務を爆速化するPowerShell、ファイルを別フォルダにコピーし名称を変更する方法
  13. Windowsのポチポチ業務を爆速化するPowerShell、ファイル名を変更する方法
  14. Windowsのポチポチ業務を爆速化するPowerShell、正規表現で複雑なファイル名変更をする方法
  15. Windowsのポチポチ業務を爆速化するPowerShell、タスクスケジューラでスクリプトを決まった日時に起動する方法
  16. Windowsのポチポチ業務を爆速化するPowerShell、ファイルをバックアップするスクリプトの作り方
  17. Windowsのポチポチ業務を爆速化するPowerShell、関数を作ってスクリプトから呼び出す方法
  18. Windowsのポチポチ業務を爆速化するPowerShell、関数をコンソールで登録して呼び出す方法
  19. Windowsのポチポチ業務を爆速化するPowerShell、短いワードでサッと関数を呼び出すエイリアスの使い方
  20. Windowsのポチポチ業務を爆速化するPowerShell、関数やエイリアス保存場所のドライブを紹介します
  21. Windowsのポチポチ業務を爆速化するPowerShell、elseifで日付の元号を判定する方法
  22. Windowsのポチポチ業務を爆速化するPowerShell、日付を操るDatetime型
  23. 自称IT企業があまりにITを使わずに嫌になって野に下った俺が紹介するWindowsの自動化の方法
  24. 【 Remove-Item 】コマンドレット――ファイルやフォルダを削除する
  25. About Execution Policies
  26. PowerShellでIf文を利用した条件分岐を行う
  27. PowerShellでIf文を利用した条件分岐を行う(比較演算子)
  28. PowerShell実例集ジャーナル
  29. 各種「開発環境稼働方法」など一覧
  30. Python中級者への道しるべ
  31. WP SyntaxHighlighterを使ってみる
  32. IT業界で働く者の基礎知識となるクラウドネイティブとは?
  33. Windows 10で日本語入力できない、半角/全角キーが効かなくなった場合の解決方法
  34. 各種指示書
  35. PyCharmでデバッグを行う方法
  36. PyCharm 2019.2
  37. Windows PowerShell ドライブの管理
  38. Gutenberg移行後の最初の編集
  39. WordPress5.0の新エディタ「Gutenberg(グーテンベルグ)」の使い方
  40. Gutenbergの便利な使い方とテーマ対応状況
  41. Enlighter snapshot各種
  42. 200109どうやってAIを学習するか?
  43. ゴリゴリの文系がAIをほぼ独学した半年
  44. Pythonでゼロからでもサービス開発・公開できる学習ロードマップ
  45. データベース接続確立エラー(パスワード変更)

iPhone No.1バインダー

  1. 「Googleフォト」の使い方
  2. ガラケーからスマホへの機種変更
  3. iPhoneの使い方
  4. iPhoneの設定
  5. ソフトウェアキーボードの基本操作
  6. iPhoneキーボードハンドリング
  7. Yahoo乗換案内
  8. iOSの中で、アプリケーション同士が連携するための仕組み
  9. ブログ記事の下書きにiPhone「メモ帳」が最強!
  10. 高スパ「iPhone SE」と「iPhone11」どちらを選ぶ
  11. Siriショートカットの使い方と便利な作成例
  12. ブックマークの登録・削除・編集する
  13. iPhoneの標準ブラウザ「Safari」の基本操作・便利機能・小ワザまとめ
  14. 音声認識編集記号

iPhone No.2バインダー

  1. iPhone充電記録
  2. BackUpEtoUSB日付入り.ps1(PowerShell_ISE)
  3. Pipenvを用いたPythonの環境構築
  4. PyCharmが使用するディレクトリ
  5. PyCharmでライブラリをインストールする
  6. AnacondaなしでAtomのHydrogenを入れる
  7. OutlookからGmailへの連絡先の移行について
  8. メールソフトの設定
  9. リカバリガイド(Windows10)
  10. 知らないと損、iPhoneの操作を自動化する「ショートカット」アプリの使い方 基本ガイド
  11. iPhoneの「ショートカット」って何?おすすめショートカット12個!登録していると便利だぞ

総集編 Index

  1. 開発環境稼働方法
  2. Flask構造P
  3. emacsの操作
  4. DeepLearningモジュール一覧表
↑人気ブログランキングに参加しています。ポチっと1票を!

WSLでの和暦→西暦プログラムの実行

WSLでの和暦→西暦プログラムの実行

①Library→USBメモリー
②USBメモリ-→WSLのディレクトリに
③S_JIS→UTF-8
④Python3の実行(elif07.py)
⑤元号、数字、年(全角)の入力
⑥デリミターは半角(または全角)
⑦数字も半角(または全角)
アイキャッチ画像を参照ください。

↑人気ブログランキングに参加しています。よろしければ1票を!

Atom-WSL-PyCharm相関図その2

190625

Atom-WSL-PyCharm相関図その2

2019/06/25
Atom
① 印刷できない。
② Flaskがない。
③ データベースがない。
④ Moduleの管理が難しい。
⑤ Pythonの各属性を色表示できる。
⑥ JupyterのModuleを引き込むことができる。
⑦ Hydrogenでstep by stepのデバッグができる。(◎)
⑧ Windows特にExplorerが生で使える。
⑨ Demo Programが多数存在する。(◎)
⑩ 「elif」「else」がエラーになるバグがある。
⑪ Pycharmとモジュールの共存できる。

WSL(Windows Subsystem for Linux)
① 印刷できない。
② データベースがない。
③ Jupyterのmoduleを引き込むことができない。
④ Step by stepのデバッグができない。
⑤ Windowsとのやり取りがUSB経由である。
⑥ Pythonの各属性を色表示できる。(◎)
⑦ Flask環境下でデバッグできる。(◎)
⑧ Linuxのコマンドがじかに実行できる。(◎)
⑨ Moduleの管理が比較的しやすい。

PyCharm
① Step by stepのデバッグができない。
② 有料でないとSQLite3(DB)が使えない。
③ 慣れていない。
④ Linuxのコマンドが使えない。
⑤ Jupyter-notebookとの連携がとりにくい。
⑥ 有料でデータベースが使える。(◎)
⑦ 印刷ができる。(◎)
⑧ Atom下のモジュールと共存できる。(◎)
⑨ インタラクティブシェルで実行できる。「Python console」(◎)
⑩ Atomより貧弱であるが属性の色表示がされる。
⑪ パッケージの追加が簡単。
⑫Djangoが使える。

1. sinカーブなど: Atom Hydrogen(Shift + Enter)・PyCharm(Run) 可
2. Image: Atom Hydrogen・PyCharm 可
3. turtle: Atom(Alt + R)・PyCharm 可
4. pandas,numpy: Atom Hydrogen 可
5. flask demoxx: WSL(Ubuntu)・PyCharm 可
6. 日本語表示: Atom Hydrogen・PyCharm 可
7.debugging機能:PyCharm容易・Atom Hydrogen 可

以上

↑人気ブログランキングに参加しています。よろしければ1票を!

メニューの追加(Python,lions,NHK超AI入門,Linux,WSL,レジストリ,システムジェネレーションetc.)

メニューの追加(Python,lions,NHK超AI入門,Linux,WSL,レジストリ,システムジェネレーション,Atom,Emacs,markdown,Python,Flask)

「野生の証明」のメニューに「Lions」、「展覧会」、「食事」、「NHK超AI入門」、「Linux」、「WSL」(Windows Subsystem for Linux)、「レジストリ」、「システムジェネレーション」、「Atom」、「Emacs」、「markdown」、「Python」を追加した。
アイキャッチ画像は「Linux」、「WSL」のパスを示している。
①「活動」→「趣味」→「lions」
①-1「活動」→「趣味」→「展覧会」
①-2「活動」→「趣味」→「食事」
②「コンピューター」→「ソフトウェア」→「Deep Learning」→「NHK超AI入門」
③「コンピューター」→「ソフトウェア」→「オペレーティングシステム」→「Linux」(→「Flask」)
④「コンピューター」→「ソフトウェア」→「オペレーティングシステム」→「Windows10」→「WSL」
⑤「コンピューター」→「ソフトウェア」→「オペレーティングシステム」→「Windows10」→「レジストリ」
⑥「コンピューター」→「ソフトウェア」→「システムジェネレーション」
⑦「コンピューター」→「ソフトウェア」→「Editor」→「Atom」
⑧「コンピューター」→「ソフトウェア」→「Editor」→「Emacs」
⑨「コンピューター」→「ソフトウェア」→「Editor」→「markdown」
⑩「コンピューター」→「ソフトウェア」→「言語」→「その他の言語」→「Python(Object指向)」→「Python」

↑人気ブログランキングに参加しています。よろしければ1票を!

外付けHDDにUbuntu(Linux)をインストールする(まとめ・結論)

最近当ブログに外付けハードディスクを使ってUbuntu(Linux)をしたいがどうだろうという目的で訪れるユーザーが増えている。結論から言うと否である。Native Linux用Applicationを使用したい場合などの特別な理由がない限りWSLの使用をお勧めする。

190523

外付けHDDにUbuntu(Linux)をインストールする(まとめ・結論)

最近当ブログに外付けハードディスクを使ってUbuntu(Linux)をしたいがどうだろうという目的で訪れるユーザーが増えている。結論から言うと否である。

① 外付けハードディスクにUbuntuを合計2回インストールした。
② また古いWindows M/CにLinuxを1回インストールした。
③ 現在はBusiness用PCにWSL(Windows Subsystem for Linux)をインストールして使っている。
④ 外付けハードディスクは外国製と国内製の映像録画用HDDで使用した。
⑤ ④はいずれも2~3週間でBoot Errorになった。
⑥ これにより映像用外付けハードディスクはLinuxM/Cとしては不適であるとの結論である。
⑦ ②は1ヶ月半ほど稼働したがそののちBoot Errorを起こした。
⑧ ⑥⑦よりLinuxをインストールすると同じ個所を参照しトラブルを起こしやすい。
⑨ WSLを使ってLinuxを経験したいのなら中古PCで十分との結論に達した。去年(平成30年)の10月インストールして以来現在(令和元年11月3日)まで順調に稼働している。
⑩ Native Linux用Applicationを使用したい場合などの特別な理由がない限りWSLの使用をお勧めする。

linuxConsole

(写真はネットより借用)
以上

↑人気ブログランキングに参加しています。よろしければ1票を!

Chainerが作った「ディープラーニング入門」を紹介!

機械学習を勉強するには、いくつかの知識が必要です。それらを学ぶ上でいろいろな書籍やネットの情報が必要ですが、Chainerが出した「ディープラーニング入門」で必要十分です。

Chainerが作った「ディープラーニング入門」を紹介!

以下、DogFortune(Qiita)さんから引用。

機械学習を勉強するには、いくつかの知識が必要です。

• 統計や線形代数といった数学の知識
• Pythonを使うのでプログラミングの知識
• 画像処理、音声処理といった知識
• 学習を行う為のコンピューティングリソースの準備

それらを学ぶ上でいろいろな書籍やネットの情報が必要ですが、Chainerが出した「ディープラーニング入門」で必要十分です。
これはChainer Tutorialです。
最低限必要な知識がまとめて学べます。

このチュートリアルでは、機械学習を行っていく上で必要な最低限の数学とプログラミングを学んでいくことができます。
• Pythonの文法から条件式、クラスや継承といったところまであります。もちろんNumPyやCuPyもしっかりあります。
• 数学については、微分、合成関数、偏微分といった所もしっかり記述されています。これらを順番にこなすことで、機械学習を行ううえで、「なぜ必要なのか」をしっかり学んでいけます。
• 確率変数、確率分布も学べます。

ここまでしっかりと揃っているうえに、あちこちサイトを行き来しなくてもよい という所が非常に素晴らしいです。

ブラウザで学べる

機械学習の知識がついてきたところで、さぁやってみようと思った時に問題になるのが環境の構築です。数年前に比べたら比較的簡単に環境を構築できるようになってきましたが、フレームワークの進化も非常に早く、ネットの情報がすでに古いといった事も多いです。
このチュートリアルは、ブラウザ上で学ぶことができます。それも、資料の中に登場するコードがそのままブラウザ上で実行できる という所です。
資料はすべてノートブック形式になっていますので、解説とコードが同時に実行できるようになっています。なので、ただ読むだけの資料ではなく、実際にコードを記述してその結果も学ぶことができます。 これは非常にありがたいです。

Google Colaboratoryとして実行できる!!

これがこのチュートリアル最大のポイントです。先ほど資料はノートブック形式になっていると述べましたが、これがGoogle Colaboratoryで実行できるようになっている事です。
資料の上部にある「Open in Colab」ボタンを押すとすぐに開くことができます。
基本的にはJupyter Notebookと同じですが、Google Colaboratoryでは GPUリソースが利用できます。しかも無料です。
ですので処理の重い畳み込みニューラルネットワークも比較的短時間で体験することができます。GPUが絡むと途端に環境構築が大変になるので、ぜひ活用すると良いです。

まとめ

公式にもありますが、 このサイトだけで機械学習・ディープラーニングに入門できる事を目指して作られています。 基本的な知識はすべて網羅されているので、今から始めたい人はぜひ見てみてください。

章立ては次のようになっています。

Step1 準備編
。 1. はじめに
o 1.1. 必要なもの
o 1.2. Google Colaboratory の基本
o 1.3. Colab の基本的な使い方
• 2. Python 入門
• 3. 機械学習に使われる数学
• 4. 微分の基礎
• 5. 線形代数の基礎
• 6. 確率・統計の基礎
Step2 機械学習とデータ分析入門
• 7. 単回帰分析と重回帰分析
• 8. NumPy 入門
• 9. scikit-learn 入門
• 10. CuPy 入門
• 11. Pandas 入門
• 12. Matplotlib 入門
Step3 ディープラーニング入門
• 13. ニューラルネットワークの基礎
• 14. Chainer の基礎
• 15. Chainer の応用
• 16. トレーナとエクステンション

また今後次のような項目が登場するようです。

• 応用編:画像認識 (coming soon)
• 応用編:自然言語処理 (coming soon)
• 応用編:深層強化学習 (coming soon)
• デプロイ (coming soon)

以下Chainerから

「はじめに」

Chainer チュートリアルへようこそ。
このチュートリアルは、機械学習やディープラーニングの仕組みや使い方を理解したい大学学部生以上の方に向けて書かれたオンライン学習資料です。
機械学習の勉強を進めるために必要な数学の知識から、Python というプログラミング言語を用いたコーディングの基本、機械学習・ディープラーニングの基礎的な理論、画像認識や自然言語処理などに機械学習を応用する方法に至るまで、幅広いトピックを解説しています。
機械学習を学び始めようとすると、ある程度、線形代数や確率統計といった数学の知識から、何らかのプログラミング言語が使えることなどが必要となってきます。 しかし、そういった数学やプログラミングの全てに精通していなければ機械学習について学び始められないかというと、必ずしもそうではありません。
本チュートリアルでは、機械学習やディープラーニングに興味を持った方が、まず必要になる最低限の数学とプログラミングの知識から学び始められるように、資料を充実させています。
そのため、できる限りこのサイト以外の教科書や資料を探さなくても、このサイトだけで機械学習・ディープラーニングに入門できることを目指して、作られています。初学者の方が「何から学び始めればいいのか」と迷うことなく学習を始められることを目指したサイトです。
また、本チュートリアルの特徴として、資料の中に登場するコードが、Google Colaboratory というサービスを利用することでそのままブラウザ上で実行できるようになっているという点があります。
ブラウザだけでコードを書き、実行して、結果を確認することができれば、説明に使われたサンプルコードを実行して結果を確かめるために、手元のコンピュータで環境構築を行う必要がなくなります。
本章ではまず、この Google Colaboratory というサービスの利用方法を説明します。
1.1. 必要なもの
• Google アカウント(お持ちでない場合は、こちらからお作りください:Google アカウントの作成)
• ウェブブラウザ( Google Colaboratory はほとんどの主要なブラウザで動作します。PC 版の Chrome と Firefox では動作が検証されています。)
1.2. Google Colaboratory の基本
Google Colaboratory(以下 Colab )は、クラウド上で Jupyter Notebook 環境を提供する Google のウェブサービスです。Jupyter Notebook はブラウザ上で主に以下のようなことが可能なオープンソースのウェブアプリケーションであり、データ分析の現場や研究、教育などで広く用いられています。
• プログラムを実行と、その結果の確認
• Markdown と呼ばれる文章を記述するためのマークアップ言語を使った、メモや解説などの記述の追加
Colab では無料で GPU も使用することができますが、そのランタイムは最大 12 時間で消えてしまうため、長時間を要する処理などは別途環境を用意する必要があります。 学びはじめのうちは、数分から数時間程度で終わる処理がほとんどであるため、気にする必要はありませんが、本格的に使っていく場合は有料のクラウドサービスを利用するなどして、環境を整えるようにしましょう。

chainerチュートリアル

(以上Qiitaの記事-DogFortune-及びChainerのはじめにを引用させていただきました。)

↑人気ブログランキングに参加しています。よろしければ1票を!

Jupyternotebook-ModuleNotFoundについて

そこでググってみたらバージョン2と3を両方入れている場合はバージョン3のほうはpip3を使うと示していたのでpip3でnumpy,matplotlib etcをインストールしてみた。(Anaconda3でインストールしていると両方入ってしまう)

WSL Jupyternotebook-ModuleNotFoundについて

AI関連開発を再開した。

① Python3.6はコマンドプロンプトのバーチャルエンバイロメントで動いている。
② これは(>atom .)で起動する。
③ 上記はWSLでHydrogenをインストールしてもShift+Enterで動かないため回避策で行った。
④ コマンドプロンプトでは
・>python -m venv hydrovenv
・>hydrovenv\scripts\activate
・>pip freeze
・>atom .
で行う。
こののちAtomのOpen Projectをクリックして求めるPath上のフォルダを指定する。
⑤ これでShift+Enterでmatplotlibなどをインストールしている場合、図形などを描くことができる。
⑥ (hydrovenv)C:\Users\xxxxx>pip install Numpyなどでライブラリに入れるモジュールをインストールする。
⑦ しかしWSLでJupyternotebookを走らせなければならなかった。
⑧ プログラムからNumpy,matplotlib,Scipyなどを呼び出すとモジュール・ノットファウンドになってしまう。
⑨ 最初はWindowsの環境変数の問題だと思った。
⑩ 次に
・>pip list | grep numpy
をやったらnumpy(1.16.3)と表示された。(numpyが入っている証拠)
・>pip show numpyとやってみた。
/home/xxxxx/.local/lib/python2.7/site-packages
と表示された。(python2.7に入っていることを示す証拠)Python3を動かして、
・>>>import sys
・>>>import pprint
・>>>pprint.pprint(sys.path)
をやってみた。
⑪ バージョン2が入っていたので
・$ cp -r python2.7 pythonbu2.7(python2.7を無効化)
・Module not foundの現象は変わらなかった。
⑫ そこでググってみたらバージョン2と3を両方入れている場合はバージョン3のほうはpip3を使うと示していたのでpip3でnumpy,matplotlib etcをインストールしてみた。(Anaconda3でインストールしていると両方入ってしまう)(結局python3の方にはもともとnumpyなどが入っていなかったことになる)
⑬ みごとJupyter-notebookは稼働した。
⑭ No module named errorは解決された。
以上

↑人気ブログランキングに参加しています。よろしければ1票を!

Atom-WSL-PyCharm相関図

Atom-WSL-PyCharm相関図を簡単にまとめましたので中間報告的に記述します。(長短含めて)

Atom-WSL-PyCharm相関図

2019/01/06
Atom
① 印刷できない。
② Flaskがない。
③ データベースがない。
④ Moduleの管理が難しい。
⑤ Pythonの各属性を色表示できる。
⑥ JupyterのModuleを引き込むことができる。
⑦ Hydrogenでstep by stepのデバッグができる。(◎)
⑧ Windows特にExplorerが生で使える。
⑨ Demo Programが多数存在する。(◎)

WSL(Windows Subsystem for Linux)
① 印刷できない。
② データベースがない。
③ Jupyterのmoduleを引き込むことができない。
④ Step by stepのデバッグができない。
⑤ Windowsとのやり取りがUSB経由である。
⑥ Pythonの各属性を色表示できる。(◎)
⑦ Flask環境下でデバッグできる。(◎)
⑧ Linuxのコマンドがじかに実行できる。(◎)
⑨ Moduleの管理が比較的しやすい。

PyCharm
① Step by stepのデバッグができない。
② 有料でないとSQLite3(DB)が使えない。
③ 慣れていない。
④ Linuxのコマンドが使えない。
⑤ Jupyterとの連携がとりにくい。
⑥ 有料でデータベースが使える。(◎)
⑦ 印刷ができる。(◎)

以上

↑人気ブログランキングに参加しています。よろしければ1票を!