Python Prog.の復習

最初は「N Queens problem」のコードである。

最初は「N Queens problem」のコードである。
##!/usr/bin/env python3
# Modified this program by S.K on 2020/04/26
"""
N queens problem.

The (well-known) problem is due to Niklaus Wirth.

This solution is inspired by Dijkstra (Structured Programming).  It is
a classic recursive backtracking approach.
"""

N = 8                                   # Default; command line overrides

class Queens:

    def __init__(self, n=N):
        self.n = n
        self.reset()

    def reset(self):
        n = self.n
        self.y = [None] * n             # Where is the queen in column x
        self.row = [0] * n              # Is row[y] safe?
        self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
        self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
        self.nfound = 0                 # Instrumentation

    def solve(self, x=0):               # Recursive solver
        for y in range(self.n):
            if self.safe(x, y):
                self.place(x, y)
                if x+1 == self.n:
                    self.display()
                else:
                    self.solve(x+1)
                self.remove(x, y)

    def safe(self, x, y):
        return not self.row[y] and not self.up[x-y] and not self.down[x+y]

    def place(self, x, y):
        self.y[x] = y
        self.row[y] = 1
        self.up[x-y] = 1
        self.down[x+y] = 1

    def remove(self, x, y):
        self.y[x] = None
        self.row[y] = 0
        self.up[x-y] = 0
        self.down[x+y] = 0

    silent = 0                          # If true, count solutions only

    def display(self):
        self.nfound = self.nfound + 1
        if self.silent:
            return
        print('+-' + '--'*self.n + '+')
        for y in range(self.n-1, -1, -1):
            print('|', end=' ')
            for x in range(self.n):
                if self.y[x] == y:
                    print("Q", end=' ')
                else:
                    print(".", end=' ')
            print('|')
        print('+-' + '--'*self.n + '+')

def main():
    import sys
    silent = 0
    n = N
    if sys.argv[1:2] == ['-n']:
        silent = 1
        del sys.argv[1]
    if sys.argv[1:]:
        n = int(sys.argv[1])
    q = Queens(n)
    q.silent = silent
    q.solve()
    print("Found", q.nfound, "solutions.")

if __name__ == "__main__":
    main()


文字が小さく見ずらい時はWindows拡大鏡をお使いください。Windows・キー + 「+」(プラス・キー)(Windows・キーはキーボード左下、左から3~4番目のキー。抜けるにはWindows・キー + 「ESCキー」を押します)
Enlighterのコードは窓の右上アイコンの「<>」を押すと明るい表示になります。

N = 12 の時
N = 12 の時
N = 4 の時
N = 4 の時

だいぶ時間が空いた、もうPythonのプログラミングも忘れてしまった。徐々に思い出していこう。最初は「N Queens problem」のコードである。かの構造化プログラミングで有名なダイクストラの解である。

↑人気ブログランキングに参加しています。ポチっと1票を!

投稿者: 管理者

大学の工学部電気工学科演算工学講座で学び卒業論文で「小型コンピューターのオペレーティングシステム(ジョブの連続処理)」を書いた。卒業してコンピューター会社に入社し以来コンピューター一筋SE、SAとして働いた。退職後趣味でWeb開発をしている。現在、AIに興味を持っている。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です